周绪红院士:钢管混凝土结构在海上风电工程中的应用探讨
2020年12月4日至6日,由中国海洋工程咨询协会海上风电分会、中国南方电网有限责任公司、中国华能集团清洁能源技术研究院有限公司、中国长江三峡集团有限公司、新疆金风科技股份有限公司等单位共同主办的“2020中国海上风电工程技术大会”在北京召开。
中国工程院院士、重庆大学原校长周绪红出席大会并发表题为“钢管混凝土结构在海上风电工程中的应用探讨”的主题报告。
以下为发言实录:
周绪红:尊敬的各位领导、各位专家,大家早上好。今天我讲的题目是“钢管混凝土结构在海上风电工程中的应用”。
我们一直做结构工程的研究的,我们有一个团队,国家钢结构中心西部研究院,最近钢结构协会适应能源发展能源调整成立了风电协会挂在我们这里,每年学习活动还是比较活跃的,欢迎大家有机会参加。我们这个团队是一个国际化的团队,是全世界国籍的,他们主要在风资源、风环境方面做很多工作,王宇航教授是联系人,大家也可以跟他联系。今天这个报告是代表团队跟大家汇报三个方面。
第一,海上风电结构的特点。
我们面临的背景就是平价时代“降本增效”对我们提出了很多的要求,国家将要取消补贴,我们怎么样能够降本增效?降本增效各个环节都要采取措施,海上风电有两种基础形式,一种是固定的、一种是飘浮式的,这里有哪些要素我们能够做哪些文章?这里列了几个方面,这些方面也不是我列出来的,是国际能源有一个资料说有这样几个方面,固定式基础应该做哪些?飘浮式基础应该做哪些?总结下来之后塔筒结构的优化是很重要的事情,做结构的专业人士从这里可以找到用武之地。每个环节都要着手,最后能够有10%-35%的空间可以降本增效,这也是国际能源署的资料。
这里面不仅仅是结构的设计、建造、运维,如果是一个好的结构一定是要建造方便、施工方便、运维方便,风电结构与基础结构是降本增效很重要的方面,叶片结构、塔筒结构、基础结构、飘浮式系泊结构等,必须通过海洋环境和地质的要求选择结构的形式,我们还要进一步通过创新优化结构形式,现在从近海向远海发展、从浅海向深海发展基础越来越深,结构部分在这个里面占的比例是怎样的?我们也有一个资料表示出来,随着近海向远海、浅海向深海的发展基础占的比重越来越大,这说明里面的空间是很大的,必须在这方面降本增效才能够发挥重要的作用,但是另外一个方面,国家的海洋气候环境、地质环境跟欧美比我们有一些特点,有些情况更复杂,我们每年受到7-9次正面台风的袭击,台风情况、海洋气候的情况更复杂。我们1.8万多公里的海域,海岸线处于太平洋的地震带上,我们在地震方面做的工作还不是很够,比如说勘测设计方法等相关的规范在海上风电结构领域里面怎么应用,土木工程里面已经有很多这样的规范并且都比较完善了,但是在海洋工程里面、海洋结构方面怎么应用这需要做结构的人跟做海洋工程的人相互的结合做好这样一项工作,编制适用于海上风电风电结构勘测设计规范、设计标准,提出相应的设计理论、设计方法。1.8万公里的海岸线地质条件是十分复杂的,经常碰到的情况是沉桩、溜桩等,因为这种情况会使得我们成本巨大增加,必须在技术创新的角度在技术上采取一些措施。
还有就是单机容量越来越大,国外走在我们的前面,我们自己也是在紧紧追上,单机容量越来越轮毂就越来越高、叶片越来越大,使得我们基础设施的层本进一步增加,难度也越来越大,这里涉及到基础工程、结构工程、变电站、电网的连接等,这里是轮毂高度示意图,随着时间的推移越来越大、越来越高,一方面我们要降低成本,另外一方面成本在某些方面还要增加,这都是矛盾。这样导致了海上风电结构一定向着大型化、复杂化的方向发展,都是很大的东西,集合尺寸大,所采用的钢板很厚、用钢量很大,钢板厚带来很多问题,比如焊接上的质量问题、钢板本身分层的问题,结构复杂、环境复杂,安装难度也大,这都是要增加一些成本的。
这里列举了用钢量的情况,德国的风电厂单桩要用到1302.5吨钢材,英国海上风电是飘浮式的基础都用到3000多吨的钢材,所以用钢量是很大的。葡萄牙飘浮式的基础都用到3000吨的用钢量。国内的情况也差不多,广东阳江300MW海上风电场单桩基础用钢量达到1740吨,比欧洲的还要更高,因为我们条件更复杂,所以这个成本是提高的。导管架24米×24米×52米,钢材都是千吨量级的。广东阳江海上风电用到了1560多吨。浙江升压站用到1000吨左右钢材,英国的也是如此。用钢量越来越大,既要安全又要经济,海上风电结构能够实现一个优化一个好的结构一定要安全又经济,要安全就要多用钢,要想经济就要少用钢,这可能就要损害一点安全度,在者之间就是一个平衡,还有就是受钢材那么多条件的制约,要在这个之间找到平衡点、找到优化,并且要使得我们在基础理论研究、设计、运维环节都能够降本增效,这样我们才可以实现我们希望降本的目标。
第二,钢管混凝土结构的性能及优势。
这样一种结构在海上风电中运用是有优势的,钢结构优很多特点,钢结构的特点就是强度高、重量轻,同样质量的钢材能够相对于其他材料做出更大的跨度、高度更高的结构,塑性好、韧性好、安全方便、施工周期短,缺点就是钢度小、易振动、疲劳、稳定、腐蚀问题突出、造价较高。混凝土的结构的优点钢度大,疲劳及稳定性好、耐腐蚀性好、造价低,缺点是自重大、易开裂、需支模板绑钢筋、施工周期长。两种材料劣势和优势是能够互补的。我们因此要形成一种结构形式让优势能够互补,因此在风电结构我们在钢管里面填充混凝土,这样有一定的好处,钢管里面填了混凝土之后钢管对混凝土有一个套箍作用能够约束混凝土,受到压力之后混凝土要膨胀,钢料会箍住它不让它膨胀,在压力下混凝土的强度会大大提高,这时候钢材受到膨胀的拉力,这时候正好发挥了钢材的优势,钢材能够受拉、混凝土能够受压,两者的优势能够互补,这样时得这个结构相互支撑,钢结构容易发生局部不稳定,有混凝土的支撑就不会发生这个问题,所以是很优化的结构,它还带来了结构的韧性、抗震形容、防腐、抗火等优势,同时节约了成本,比钢材的成本低一点、比混凝土的成本高一点。
这样一种结构是不是简单的1+1?下面红圈就是钢管的承载能力,壁很薄所以稳定问题很突出,承载能力并不高,混凝土的就高一点,两者套起来是不是1+1?不是的,是有一个组合的效应,结果是1+1大于2,是一个组合的结构。最初的发展是把钢管里面填混凝土是防止钢管生锈,也可以增加防火的能力,把钢管包在混凝土里面可以很好的防火,这是在建筑工程上应用的,我们从这里得到启示用钢管把混凝土一套就形成了钢管混凝土,这样一种结构形式在50年代就引入了我们国家,我们国家科研人员在工程中进行了很好的应用,目前应用走在了全世界的前列,我们在国外修的建筑,国内最高建筑是上海中心、深圳大厦,这些我都参与了一些工作,都是采用钢管混凝土结构作为框架支撑,在高层建筑里面已经有很好的应用。同时在桥梁里面拱桥从赵州桥开始几十米跨度,到现在已经达到了575米,就是在钢管里面填了混凝土之后使得拱桥跨度大大增加,现在拱桥由于采用了钢管混凝土之后我们国家拱桥是走在世界最前列的,我们国家已经修了100多座,最大跨度是在广西平南山桥575米的跨度,就是钢管里面填充了混凝土。还有地铁站的应用、深圳通道、输电塔,舟山380米的输电塔也是在钢管里面填了混凝土,两者的优势可以发挥。
海上风电里面我认为它是非常有优势的,集合尺寸大、钢板厚度大、钢材用量大、安装难度大,把混凝土填进去之后钢铁厚度大大减少,这样焊接质量能够保证,撕裂的问题也可以避免,我们估算了一下可以降低用钢量15%到30%,可以很有效的节约成本。
第三,海上风电结构我们做的一些工作。
这是我们合作的,上面是混凝土的,我们要把那些片片变成钢管混凝土组合的片子,两块钢板中间夹上混凝土,把混凝土跟它很好的连接起来分成片,这样也便于运输,既适用于海上也适用于陆地。混凝土怎么样和钢板结合起来?我们中间设置了栓钉,它既要受紧也要受拉,不然混凝土和钢板容易脱离,我们做了这样一些实验、研究,我们做了大量的实验,钢板和混凝土到底怎么样共同工作的?我们对性能进行了研究,对稳定性能进行了分析,对破坏模式进行了观察,这是有限元模型的建立,通过比较校准有限元进行大量参数分析,我们提出了一些计算方法,栓钉怎么布置比较合理。
我们还做了中间空心的构件,也是两块钢板包起来,这种构件式受力极其复杂,我们研究了一套装置进行这样一种实验,做了这一套装置,在我们实验室对受弯、受扭等各种各样复杂的情况进行了实验,我们进行了大量实践实验,观察了实验现象,并且进行了反复的模拟,同时进行了有限元模拟,我们可以很好的模拟它,吻合的都比较好,我们进行了分析提出了承载能力、计算方法等等。对有几个构件进行了比较,一个是单桩,跟过去的全钢单桩基础进行比较,用钢量降低10%、材料费降低7%,最大的钢板厚度原来70mm,现在采用我们这个技术之后降低为32mm。我们对导管架也进行了计算,用钢量降低1.43%,材料费用降低13.4%,最大的钢板厚度由65mm现在降低到16mm。在承载能力、风浪流、耦合作用下的机制、疲劳性能、抗载性能等做了研究。
飘浮式基础的节点过去有一些螺栓连接的方法,这个地方是很关键的部位,所以我们提出了一套能够插下去之后再灌浆的濂江方法,我们也采用了一种构造方法。
今天主要是推广这样一种结构,推广很多年没有得到很好的应用,希望得到行业的支持,这样的结构是两种材料的优势很好的发挥,并且在工程中得到了很好的应用、取得了很好的效益,对于风电结构上来讲一点问题没有,一定能够对降本增效做出贡献,是有很广的行业前景。现在固有的产业链、思维已经形成,如果要推广这样一种新结构需要全产业链的共同努力,需要大家的支持才可能,最后让这个结构在行业里面很好的推广应用。谢谢各位。
(根据速记整理,未经演讲人审核)